A Novel Zn2-Cys6 Transcription Factor AtrR Plays a Key Role in an Azole Resistance Mechanism of Aspergillus fumigatus by Co-regulating cyp51A and cdr1B Expressions
نویسندگان
چکیده
Successful treatment of aspergillosis caused by Aspergillus fumigatus is threatened by an increasing incidence of drug resistance. This situation is further complicated by the finding that strains resistant to azoles, the major antifungal drugs for aspergillosis, have been widely disseminated across the globe. To elucidate mechanisms underlying azole resistance, we identified a novel transcription factor that is required for normal azole resistance in Aspergillus fungi including A. fumigatus, Aspergillus oryzae, and Aspergillus nidulans. This fungal-specific Zn2-Cys6 type transcription factor AtrR was found to regulate expression of the genes related to ergosterol biosynthesis, including cyp51A that encodes a target protein of azoles. The atrR deletion mutant showed impaired growth under hypoxic conditions and attenuation of virulence in murine infection model for aspergillosis. These results were similar to the phenotypes for a mutant strain lacking SrbA that is also a direct regulator for the cyp51A gene. Notably, AtrR was responsible for the expression of cdr1B that encodes an ABC transporter related to azole resistance, whereas SrbA was not involved in the regulation. Chromatin immunoprecipitation assays indicated that AtrR directly bound both the cyp51A and cdr1B promoters. In the clinically isolated itraconazole resistant strain that harbors a mutant Cyp51A (G54E), deletion of the atrR gene resulted in a hypersensitivity to the azole drugs. Together, our results revealed that AtrR plays a pivotal role in a novel azole resistance mechanism by co-regulating the drug target (Cyp51A) and putative drug efflux pump (Cdr1B).
منابع مشابه
The cdr1B efflux transporter is associated with non-cyp51a-mediated itraconazole resistance in Aspergillus fumigatus.
OBJECTIVES Recent increases in triazole resistance in Aspergillus fumigatus have been attributed primarily to target site (cyp51A) mutations. A recent survey of resistant isolates in Manchester showed that >50% of resistant isolates had no mutation in cyp51A or its promoter. We investigated the mechanisms of resistance in clinical azole-resistant isolates without cyp51A mutations. METHODS Twe...
متن کاملEpidemiological and Genomic Landscape of Azole Resistance Mechanisms in Aspergillus Fungi
Invasive aspergillosis is a life-threatening mycosis caused by the pathogenic fungus Aspergillus. The predominant causal species is Aspergillus fumigatus, and azole drugs are the treatment of choice. Azole drugs approved for clinical use include itraconazole, voriconazole, posaconazole, and the recently added isavuconazole. However, epidemiological research has indicated that the prevalence of ...
متن کاملDiscovery of a hapE Mutation That Causes Azole Resistance in Aspergillus fumigatus through Whole Genome Sequencing and Sexual Crossing
Azole compounds are the primary therapy for patients with diseases caused by Aspergillus fumigatus. However, prolonged treatment may cause resistance to develop, which is associated with treatment failure. The azole target cyp51A is a hotspot for mutations that confer phenotypic resistance, but in an increasing number of resistant isolates the underlying mechanism remains unknown. Here, we repo...
متن کاملSensitisation of an Azole-Resistant Aspergillus fumigatus Strain containing the Cyp51A-Related Mutation by Deleting the SrbA Gene
Azoles are widely used for controlling fungal growth in both agricultural and medical settings. The target protein of azoles is CYP51, a lanosterol 14-α-demethylase involved in the biosynthesis of ergosterol. Recently, a novel azole resistance mechanism has arisen in pathogenic fungal species Aspergillus fumigatus. Resistant strains contain a 34-bp or 46-bp tandem repeat (TR) in the promoter of...
متن کاملProbing the role of point mutations in the cyp51A gene from Aspergillus fumigatus in the model yeast Saccharomyces cerevisiae.
Azole-resistant strains of Aspergillus fumigatus have been detected and the underlying molecular mechanisms of resistance characterized. Point mutations in the cyp51A gene have been proved to be related to azole resistance in A. fumigatus clinical strains and with different resistance profiles depending on the amino acid change (G54E, G54V, G54R, G54W, M220V, M220K, M220T, M220I). The aim of th...
متن کامل